
CS 1337
Lab Assignment L4: Defusing a Binary Bomb

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our class machines. A binary bomb is a
program that consists of a sequence of phases. Each phase expects you to type a particular string on stdin.
If you type the correct string, then the phase is defused and the bomb proceeds to the next phase. Otherwise,
the bomb explodes by printing ‘‘BOOM!!!’’ and then terminating. The bomb is defused when every
phase has been defused.

There are too many bombs for us to deal with, so we are giving each student a bomb to defuse. Your
mission, which you have no choice but to accept, is to defuse your bomb before the due date. Good luck,
and welcome to the bomb squad!

Step 1: Get Your Bomb

A link by which you can obtain your bomb is available from the course website under the “Labs” menu.

The link will take you to a page that will display a binary bomb request form for you to fill in. Enter your
full name (it appears to work better if you avoid using spaces—use underscores instead) and ISU email
address and hit the Submit button. The server will build your bomb and return it to your browser in a tar
file called bombk.tar, where k is the unique number of your bomb. (A tar file is just a compressed file,
like zip.)

Copying Your Bomb to Your AWS Server

Once the bombk.tar file is saved to your computer, you will need to upload it to your server. First, on
your server, create a directory for lab 4 using the command

mkdir /home/your_user_name/CS_1337/assignments/lab_4

Next, from your local machine (this means exiting your server or opening a different terminal window
where you are not logged in to the server), you need to copy the bombk.tar file to the directory you
just created on your AWS server. Linux and Mac users, you can do this from the commandline using the
following command:

scp /local/path/to/bombk.tar user name@ip address:/remote/path/to/lab 4

1



where user name and ip address are the same username and address you use when you ssh into your
server (if you have an ssh config shortcut as recommended in Lab 1, you can just put that in instead).
Note that you if you drag and drop a file from your desktop into the terminal, it will automatically insert
the /path/on/local/machine/to/your/bombk.tar into the commandline for you. The remote
path to your lab 4 directory is the path returned by pwd when in the lab 4 directory on your server.

Windows users, your commandline likely also has the scp command, in which case you can follow the
same instructions above. Note that you will not use Putty for this; Putty signs you in to your server and
this command has to be run from your local machine (look for the Windows Command Prompt or Terminal
application on your machine). If that doesn’t work, try the same command but with pscp instead of
scp. If that doesn’t work, then you need to install PSCP to your local machine. See instructions here:
http://xray.rutgers.edu/˜matilsky/documents/pscp.htm

Troubleshooting/understanding scp

scp is just like the mv or cp commands in Linux or the mov instruction in assembly. scp copies a source
file on one machine to a target presumably on a different machine using the syntax

scp source target

It does this (per the description given in the man scp entry) using “ssh(1) for data transfer, and uses the
same authentication and provides the same security as a login session”. The only question then is what
should the form of source and target be?

Answer: source and target are both paths. In the case of this lab, the source is a file path to the tar
file on your computer. For example, if my tar file is in my Downloads folder, then (either by drag and drop
of the file into a terminal OR by tab completion in the terminal window) I find that the path to my tar file
looks like this on my computer:

/Users/bodipaul/Downloads/bomb243.tar

You have to figure out what that path is on your computer.

This is what goes in the place of source.

Note: This is what is called an absolute path because it specifies the full path starting from the root directory.
You can alternatively pass a relative path based on the current working directory from which you run the
scp command.

target refers to the path to where you want the file to “land” on your server. To find this, I suggest
logging into your server and navigating (i.e., using the cd command to change directories) to the directory
where you want the file to “land”. When you get there, you can print the working directory with the pwd
command. When I navigate to my lab 4 directory and enter pwd I get back

/home/bodipaul/CS 1337/assignments/lab 4

Now, this is not quite the target yet. You need to run the scp command from on your computer (since
that’s where the tar file is), not from on your server. If you give that target filepath as the target for the
scp command from your computer, it will interpret it as a filepath on your computer (i.e., a local path).
To specify this filepath is on your AWS server (i.e., that it is a remote path), you have to prepend the
“user@host:”. My username is bodipaul and my host IP address is 3.95.179.128. So for me, prepending my

2

http://xray.rutgers.edu/~matilsky/documents/pscp.htm


username@host information before the filepath looks like this:

bodipaul@3.95.179.128:/home/bodipaul/CS 1337/assignments/lab 4

This is what goes in the place of target.

So in all, for me the scp command would look like

scp /Users/bodipaul/Downloads/bomb243.tar bodipaul@3.95.179.128:/home/bodipaul/CS 1337/assignments/lab 4

But it’s going to be different for you depending on the file directory structure on your local machine, the
name of the file you’re copying, your username and IP address for your server and the file directory structure
on your remote machine.

Untarring Your Bomb on Your AWS Server

Back on your server, navigate to the lab 4 directory. Then give the command: tar -xvf bombk.tar.
This will create a directory called ./bombk with the following files:

• README: Identifies the bomb and its owners.

• bomb: The executable binary bomb.

• bomb.c: Source file with the bomb’s main routine and a friendly greeting from Dr. Evil.

If for some reason you request multiple bombs, this is not a problem. Choose one bomb to work on and
delete the rest.

Step 2: Defuse Your Bomb

Your job for this lab is to defuse your bomb.

You must do the assignment on your server (the bomb is specifically designed for x86-64). In fact, there is
a rumor that Dr. Evil really is evil, and the bomb will always blow up if run elsewhere. There are several
other tamper-proofing devices built into the bomb as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at the hints section below for some tips
and ideas. The best way is to use your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the bomblab server, and you lose 1/4 point (up to a max of 20
points) in the final score for the lab. So there are consequences to exploding the bomb. You must be careful!

The first four phases are worth 10 points each. Phases 5 and 6 are a little more difficult, so they are worth
15 points each. So the maximum score you can get is 70 points.

Although phases get progressively harder to defuse, the expertise you gain as you move from phase to phase
should offset this difficulty. However, the last phase will challenge even the best students, so please don’t
wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,

3



linux> ./bomb psol.txt

then it will read the input lines from psol.txt until it reaches EOF (end of file), and then switch over to
stdin. In a moment of weakness, Dr. Evil added this feature so you can store solutions to phases in a file
psol.txt (using vim) so that you don’t have to keep retyping the solutions to phases you have already
defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the assembly
code and how to set breakpoints. You will also need to learn how to inspect both the registers and the
memory states. One of the nice side-effects of doing the lab is that you will get very good at using a
debugger. This is a crucial skill that will pay big dividends the rest of your career.

Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be posted on the
Discord channel for the lab.

Submission

There is no explicit submission. The bomb will notify your instructor automatically about your progress as
you work on it. You can keep track of how you are doing by looking at the class scoreboard which is avail-
able via a link from the “Labs” menu on the course website. The linked web page is updated continuously
to show the progress for each bomb for every student in the class (bombs are anonymized).

Note: you do not need to worry about using git on this lab.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one request, please do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for several reasons:

• You lose 1/4 point (up to a max of 20 points) every time you guess incorrectly and the bomb explodes.

• Every time you guess wrong, a message is sent to the bomblab server. You could very quickly saturate
the network with these messages, and cause the system administrators to revoke your computer access.

• We haven’t told you how long the strings are, nor have we told you what characters are in them. Even
if you made the (incorrect) assumptions that they all are less than 80 characters long and only contain

4



letters, then you will have 2680 guesses for each phase. This will take a very long time to run, and
you will not get the answer before the assignment is due.

There are many tools which are designed to help you figure out both how programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you may find useful in analyzing your bomb, and
hints on how to use them.

• ctl-c (this is the control button plus ’c’)

You should pretty much always run your bomb executable in gdb (more below), but should you start
your bomb without gdb, you will want to kill the program rather than set of the bomb by failing a
phase. In Linux, you can kill any process at any point simply by executing ctl-c.

• gdb

The GNU debugger, this is a command line debugger tool available on virtually every platform. You
can trace through a program line by line, examine memory and registers, look at both the source code
and assembly code (we are not giving you the source code for most of your bomb), set breakpoints,
set memory watch points, and write scripts. This program is launched from the commandline with
your bomb executable given as an argument (similar to how you’ve done in your homeworks).

The CS:APP web site

http://csapp.cs.cmu.edu/public/students.html

has a very handy single-page gdb summary that you can print out and use as a reference. Here are
some other tips for using gdb.

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn
how to set breakpoints. (Word to the wise: set a breakpoint on the function that makes the bomb
explode as a failsafe!)

– For online documentation, type “help” at the gdb command prompt, or type “man gdb”,
or “info gdb” at a Unix prompt. Some people also like to run gdb under gdb-mode in
emacs.

– Make gdb work for you the way you want it to. Figure out how to execute multiple commands
at once (i.e., define a function). Figure out how to save a list of breakpoints so you don’t have
to reenter them each time.

• objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all functions
and global variables in the bomb, the names of all the functions the bomb calls, and their addresses.
You may learn something by looking at the function names! This program is launched from the
commandline with your bomb executable given as an argument.

• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembler code can tell you how the bomb works.

5

https://itecnote.com/tecnote/multiple-commands-in-gdb-separated-by-some-sort-of-delimiter/
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Save-Breakpoints.html


Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to
system-level functions are displayed in a cryptic form. For example, a call to sscanf might appear
as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was to sscanf, you would need to disassemble within gdb. This program
is launched from the commandline with your bomb executable given as an argument.

• strings

This Linux command line utility will display the printable strings in any file that is passed as an
argument.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos, man,
and info are your friends. In particular, man ascii might come in useful. info gas will give you
more than you ever wanted to know about the GNU Assembler. Also, the web may also be a treasure trove
of information. If you get stumped, feel free to ask the TAs or the instructor for help. You are welcome to
discuss the lab and ask questions on Discord, but please do not do other people’s thinking and learning for
them.

Good luck!

6


	Introduction

