
CS 1337 The Attack Lab: Understanding Buffer Overflow Bugs

1 Introduction

This assignment involves generating a total of five attacks on two programs having different security vul-
nerabilities. Outcomes you will gain from this lab include:

• You will learn different ways that attackers can exploit security vulnerabilities when programs do not
safeguard themselves well enough against buffer overflows.

• Through this, you will get a better understanding of how to write programs that are more secure, as
well as some of the features provided by compilers and operating systems to make programs less
vulnerable.

• You will gain a deeper understanding of the stack and parameter-passing mechanisms of x86-64
machine code.

• You will gain a deeper understanding of how x86-64 instructions are encoded.

• You will gain more experience with debugging tools such as GDB.

Note: In this lab, you will gain firsthand experience with methods used to exploit security weaknesses in
operating systems and network servers. Our purpose is to help you learn about the runtime operation of
programs and to understand the nature of these security weaknesses so that you can avoid them when you
write system code. We do not condone the use of any other form of attack to gain unauthorized access to
any system resources.

You will want to study Sections 3.10.3 and 3.10.4 of the CS:APP3e book as reference material for this lab.

2 Getting setup

As usual, this is an individual project. You will generate attacks for target programs that are custom gener-
ated for you.

Rather than completing this project on your personal AWS server, you will complete this project on a
different server. You should have received information on accessing an account on the Portneuf server. The
primary reason for this change is because your AWS servers (as you have configured them) do not work with
the executables for this project as they use a much older version of C. As a secondary motivation, creating

1

an account on the Portneuf server will be an excellent opportunity for you solidify all of the skills you have
used so far with SSH, Vim, and Linux and to be able to compare the experience you’ve had so far with AWS
to another remote server experience (turns out it’s pretty similar).

2.1 ISU VPN Access

The Portneuf server is on ISU’s private network. This means that you generally have to be on campus
connected to the campus network to be able to log into the Portneuf server. To allow you to log into the
server remotely, you can first connect to the virtual private network (or VPN). Once connected to the
VPN, it is as though you are connected to the campus network and you can then log into Portneuf via ssh
as done previously with your AWS servers but now with the username, domain (portneuf.cose.isu.edu), and
password I sent to you via email. As the use of VPNs to access private networks remotely is a common
practice in our field, this, too, will be a valuable learning experience. We have requested that ISU associate
VPN access privileges with your ISU credentials, but you need to download a VPN client. More info for Mac
and Windows users about this can be found here: https://tigertracks.isu.edu/TDClient/
1950/Portal/KB/?CategoryID=22226.

2.1.1 GlobalConnect VPN access for Linux Users

You’ll need to search online for a GlobalProtect package for your Linux distribution, e.g.,

https://github.com/yuezk/GlobalProtect-openconnect

or

https://github.com/dylanngo95/GlobalProtectVPN

You will then open a terminal window in which you connect to the VPN. E.g.,

user:$ globalprotect
>> connect -portal bengalgateway.isu.edu

Again, your ISU credentials are the VPN access credentials. Then, without closing this terminal, open a
second terminal window by which you connect to the Portneuf server. If you need help with this, I suggest
contacting CoSE IT (cshelp@isu.edu).

2.1.2 Troubleshooting GlobalConnect VPN

If you have trouble with the GlobalProtect VPN, I recommend connecting with the CoSE IT experts. You
can email them at cshelp@isu.edu. You might need to check that your drivers are up to date, uninstalling
other VPN clients running on your machine, and/or reinstalling GlobalProtect.

2

https://tigertracks.isu.edu/TDClient/1950/Portal/KB/?CategoryID=22226
https://tigertracks.isu.edu/TDClient/1950/Portal/KB/?CategoryID=22226
https://github.com/yuezk/GlobalProtect-openconnect
https://github.com/dylanngo95/GlobalProtectVPN

2.2 Reminder to Windows users

Recall that with Windows, you need to use Putty to ssh into a remote server. With Putty, you should see
your configuration window pop up like you did when you first were setting up the login to your AWS server.
This time, you will put “portneuf.cose.isu.edu” in as the “Host Name” and then hit “Open”. It should then
open the terminal window and prompt you for your username and password.

2.3 Getting Your Lab Files

A link by which you can obtain your target is available from the course website under the “Labs” menu. Be
sure that you have no spaces in the user name that you enter. Instead, use underscores. We need your full
name to be able to match your solution with you when putting grades in Moodle.

The server will build your files and return them to your browser in a tar file called targetk.tar, where
k is the unique number of your target programs.

Note: It takes a few seconds to build and download your target, so please be patient.

Once the targetk.tar file is saved to your computer, you will need to upload it to your account on
the Portneuf server (use the same instructions as given in the bomb lab specification) to a newly created
directory with the following absolute path.

/home/your_user_name/CS_1337/assignments/lab_5

Once the tar file is copied to your account on the Portneuf server, you can untar it with the command
tar -xvf targetk.tar. This will extract a directory targetk containing the files described below.

You should only download one set of files. If for some reason you download multiple targets, choose one
target to work on and delete the rest.

Warning: If you expand your targetk.tar on a PC, by using a utility such as Winzip, or letting your
browser do the extraction, you’ll risk resetting permission bits on the executable files.

2.4 Files in the tar

The files in targetk include:

README.txt: A file describing the contents of the directory

ctarget: An executable program vulnerable to code-injection attacks

rtarget: An executable program vulnerable to return-oriented-programming attacks

cookie.txt: An 8-digit hex code that you will use as a unique identifier in your attacks

farm.c: The source code of your target’s “gadget farm,” which you will use in generating return-oriented
programming attacks

hex2raw: A utility to generate attack strings

3

In the following instructions, we will assume that you have copied the files to a protected local directory on
the Portneuf server, and that you are executing the programs in that local directory.

3 Target Programs

CTARGET and RTARGET are two programs containing vulnerabilities that you will exploit for this lab. For
Phases 1-3 you will exploit CTARGET, and for Phases 4-5 you will exploit RTARGET. Both programs contain
a similar vulnerability in the way that they read strings from standard input. They do so with the function
getbuf defined below:

1 unsigned getbuf()
2 {
3 char buf[BUFFER_SIZE];
4 Gets(buf);
5 return 1;
6 }

The function Gets is similar to the standard library function gets—it reads a string from standard input
(terminated by ‘\n’ or end-of-file) and stores it (along with a null terminator) at a specified destination
(on the stack). In the code above, you can see that the destination is an array buf, declared as having
BUFFER_SIZE bytes. At the time your targets were generated, BUFFER_SIZE was a compile-time con-
stant specific to your version of the programs.

Functions Gets() and gets() have no way to determine whether their destination buffers are large
enough to store the string they read. They simply copy sequences of bytes, possibly overrunning the bounds
of the storage allocated at the destinations.

If the string typed by the user and read by getbuf is sufficiently short, it is clear that getbuf will return
1, as shown by the following execution examples:

unix> ./ctarget
Cookie: 0x1a7dd803
Type string: Keep it short!
No exploit. Getbuf returned 0x1
Normal return

Typically an error occurs if you type a long string:

unix> ./ctarget
Cookie: 0x1a7dd803
Type string: This is not a very interesting string, but it has the property ...
Ouch!: You caused a segmentation fault!
Better luck next time

(Note that the value of the cookie shown will differ from yours.) Program RTARGET will have the same
behavior. As the error message indicates, overrunning the buffer typically causes the program state to be

4

corrupted, leading to a memory access error. Your task is to be more clever with the strings you feed
CTARGET and RTARGET so that they do more interesting things. These are called exploit strings.

You will create a text file containing the exploit code for each of 5 phases. These should be labeled as
exploit#.txt where the number corresponds to the phase associated with the exploit. The data in these
files will be represented as pairs of hex characters (recall that a single hex pair denotes one byte) separated
by whitespace (new lines or blank spaces).

You, of course, will write your exploit strings in a normal text editor. However, your exploit strings will
typically need to contain byte values that do not correspond to the ASCII values for printing characters.
The program HEX2RAW will enable you to write your programs in ASCII and then convert your exploit
text files into the raw strings for the target programs. See Appendix A for more information on how to use
HEX2RAW.

Important points:

• Your exploits will only work when the targets are run in gdb. Furthermore, be sure that gdb is
running on your target before you disassemble the code to look for any memory addresses because
the memory addresses are assigned at runtime.

• When you have correctly solved one of the phases, your target program will print a message like the
following:

(gdb) run < exploit#-raw.txt
Cookie: 0x1a7dd803
Type string:Touch2!: You called touch2(0x1a7dd803)
Valid solution for level 2 with target ctarget

The program is allowed to crash after printing this message. So long as your exploit code evokes this
message (which we will verify when you submit your files), you will get full points for the phase.

• Your exploit string must not contain byte value 0x0a at any intermediate position, since this is the
ASCII code for newline (‘\n’). When Gets encounters this byte, it will assume you intended to
terminate the string. If you find that an address required by your exploit code (e.g., touch2()
address or the address of the exploit code itself) contains 0x0a, you can (in the latter case) try
to add padding so as to avoid having to use that exact address or you can request a new target.

• HEX2RAW expects two-digit hex values separated by one or more white spaces. So if you want to
create a byte with a hex value of 0, you need to write it as 00. To create the word 0xdeadbeef
you should pass “ef be ad de” to HEX2RAW (note the reversal required for little-endian byte
ordering).

Unlike the Bomb Lab, there is no penalty for making mistakes in this lab. Feel free to fire away at
CTARGET and RTARGET with any strings you like.

Figure 1 summarizes the five phases of the lab. As can be seen, the first three involve code-injection (CI)
attacks on CTARGET, while the last two involve return-oriented-programming (ROP) attacks on RTARGET.

5

Phase Program Method Function Points
1 CTARGET CI touch1 10
2 CTARGET CI touch2 25
3 CTARGET CI touch3 25
4 RTARGET ROP touch2 35
5 RTARGET ROP touch3 5

CI: Code injection
ROP: Return-oriented programming

Figure 1: Summary of attack lab phases

4 Phases 1-3: Code Injection Attacks

For the first three phases, your exploit strings will attack CTARGET. This program is set up in a way that the
stack positions will be consistent from one run to the next and so that data on the stack can be treated as
executable code. These features make the program vulnerable to attacks where the exploit strings contain
the byte encodings of executable code.

4.1 Phase 1

For Phase 1, you will not inject new code. Instead, your exploit string will redirect the program to execute
an existing procedure.

Function getbuf is called within CTARGET by a function test having the following C code:

1 void test()
2 {
3 int val;
4 val = getbuf();
5 printf("No exploit. Getbuf returned 0x%x\n", val);
6 }

When getbuf executes its return statement (line 5 of getbuf), the program ordinarily resumes execution
within function test (at line 5 of this function). We want to change this behavior. Within the file ctarget,
there is code for a function touch1 having the following C representation:

1 void touch1()
2 {
3 vlevel = 1; /* Part of validation protocol */
4 printf("Touch1!: You called touch1()\n");
5 validate(1);
6 exit(0);
7 }

6

Your task is to get CTARGET to execute the code for touch1 when getbuf executes its return statement,
rather than returning to test. Note that your exploit string may also corrupt parts of the stack not directly
related to this stage, but this will not cause a problem, since touch1 causes the program to exit directly.

Some Advice:

• Remember: a hex character is 4 bits (or half a byte). It takes 2 hex characters to encode one
byte. Your addresses should be 8 bytes.

• All the information you need to devise your exploit string for this phase can be determined by exam-
ining the disassembly within gdb of CTARGET.

• The idea is to position a byte representation of the starting address for touch1 so that the ret
instruction at the end of the code for getbuf will transfer control to touch1.

• Beginning from Phase 1, get in the habit of using lots of comments in your exploit string files so that
it’s easy to follow your logic. (But be careful to format them correctly!)

• Be careful about byte ordering.

• You might want to use GDB to step the program through the last few instructions of getbuf to make
sure it is doing the right thing.

• The placement of buf within the stack frame for getbuf depends on the value of compile-time
constant BUFFER_SIZE, as well the allocation strategy used by GCC. You will need to examine the
disassembled code to determine its position.

• As a starting point, I suggest that you annotate the assembly for the getbuf procedure (and possibly
other contextual procedures) so that you know exactly how it works.

• To examine the 10 8-byte values atop the stack at any point during execution starting at the stack
pointer use the gdb command

(gdb) x/10gx $rsp

As a first step, make sure that the values you encode in your exploit code are being correctly written
to the stack.

• You should diagram the stack as you want it to look for each code injection attack (one at a time),
and then figure out the string you will have to input as the exploit string in order to make the stack
appear the way you have diagrammed it. If you don’t know what the stack should look like, then you
will want to go back and review the lecture and slides in which we discussed these types of attacks.
Verify as you walk through gdb that indeed your stack does look the way you intend for it to.

7

4.1.1 Allowable exploits

Your solutions may not use attacks to circumvent the validation code in the programs. Specifically, any
address you incorporate into an attack string for use by a ret instruction should be to one of the following
destinations:

• The addresses for functions touch1, touch2, or touch3

• The address of your injected code

• The address of one of your gadgets from the gadget farm

4.2 Phase 2

Phase 2 involves injecting a small amount of code as part of your exploit string.

Within the file ctarget there is code for a function touch2 having the following C representation:

1 void touch2(unsigned val)
2 {
3 vlevel = 2; /* Part of validation protocol */
4 if (val == cookie) {
5 printf("Touch2!: You called touch2(0x%.8x)\n", val);
6 validate(2);
7 } else {
8 printf("Misfire: You called touch2(0x%.8x)\n", val);
9 fail(2);
10 }
11 exit(0);
12 }

Your task is to get CTARGET to execute the code for touch2 rather than returning to test. In this case,
however, you must make it appear to touch2 as if you have passed your cookie as its argument.

Some Advice:

• Remember: a hex character is 4 bits (or half a byte). It takes 2 hex characters to encode one
byte. Your addresses should be 8 bytes.

• I recommend the following general structure of your exploit string for this phase (the top line will
correspond with the top of the stack):

– /* exploit code */

* /* mv touch2 addr into %rdi */

* /* push %rdi */

* /* move cookie str into %rdi */

* /* ret */

8

– /* pad */

– /* address of beginning of exploit instructions */

• You will want to position a byte representation of the address of your injected code in such a way that
ret instruction at the end of the code for getbuf will transfer control to it.

• Recall that the first argument to a function is passed in register %rdi.

• Your injected code should set the register to your cookie, and then use a ret instruction to transfer
control to the first instruction in touch2.

• Do not attempt to use jmp or call instructions in your exploit code. The encodings of destination
addresses for these instructions are difficult to formulate. Use ret instructions for all transfers of
control, even when you are not returning from a call.

• See the discussion in Appendix B on how to use tools to generate the byte-level representations of
instruction sequences.

4.3 Phase 3

Phase 3 also involves a code injection attack, but passing a string as argument.

Within the file ctarget there is code for functions hexmatch and touch3 having the following C
representations:

1 /* Compare string to hex represention of unsigned value */
2 int hexmatch(unsigned val, char *sval)
3 {
4 char cbuf[110];
5 /* Make position of check string unpredictable */
6 char *s = cbuf + random() % 100;
7 sprintf(s, "%.8x", val);
8 return strncmp(sval, s, 9) == 0;
9 }
10

11 void touch3(char *sval)
12 {
13 vlevel = 3; /* Part of validation protocol */
14 if (hexmatch(cookie, sval)) {
15 printf("Touch3!: You called touch3(\"%s\")\n", sval);
16 validate(3);
17 } else {
18 printf("Misfire: You called touch3(\"%s\")\n", sval);
19 fail(3);
20 }
21 exit(0);
22 }

9

Your task is to get CTARGET to execute the code for touch3 rather than returning to test. You must
make it appear to touch3 as if you have passed a pointer to a string representation of your cookie as its
argument.

Some Advice:

• I recommend the following general structure of your exploit string for this phase (the top line will
correspond with the top of the stack):

– /* exploit code */

* /* mv touch3 addr into %rdi */

* /* push %rdi */

* /* move cookie str address into %rdi */

* /* ret */

– /* pad */

– /* address of beginning of exploit instructions */

– /* cookie str */

• You will need to include a string representation of your cookie in your exploit string. The string should
consist of the eight hexadecimal digits (ordered from most to least significant) without a leading “0x.”

• Recall that a string is represented in C as a sequence of bytes followed by a byte with value 0. Type
“man ascii” on any Linux machine to see the byte representations of the characters you need.

• Your injected code should set register %rdi to the address of this string.

• When functions hexmatch and strncmp are called, they push data onto the stack, overwriting
portions of memory that held the buffer used by getbuf. As a result, you will need to be careful
where you place the string representation of your cookie.

5 Phases 4-5: Return-Oriented Programming

Performing code-injection attacks on program RTARGET is much more difficult than it is for CTARGET,
because it uses two techniques to thwart such attacks:

• It uses randomization so that the stack positions differ from one run to another. This makes it impos-
sible to determine where your injected code will be located.

• It marks the section of memory holding the stack as nonexecutable, so even if you could set the
program counter to the start of your injected code, the program would fail with a segmentation fault.

Fortunately, clever people have devised strategies for getting useful things done in a program by executing
existing code, rather than injecting new code. The most general form of this is referred to as return-oriented
programming (ROP) [1, 2]. The strategy with ROP is to identify byte sequences within an existing program

10

�
�	
�	
	

c3 Gadget 1 code

c3 Gadget 2 code

c3 Gadget n code

%rsp

Stack

Figure 2: Setting up sequence of gadgets for execution. Byte value 0xc3 encodes the ret instruction.

that consist of one or more instructions followed by the instruction ret. Such a segment is referred to as a
gadget. Figure 2 illustrates how the stack can be set up to execute a sequence of n gadgets. In this figure, the
stack contains a sequence of gadget addresses. Each gadget consists of a series of instruction bytes, with the
final one being 0xc3, encoding the ret instruction. When the program executes a ret instruction starting
with this configuration, it will initiate a chain of gadget executions, with the ret instruction at the end of
each gadget causing the program to jump to the beginning of the next.

A gadget can make use of code corresponding to assembly-language statements generated by the compiler,
especially ones at the ends of functions. In practice, there may be some useful gadgets of this form, but not
enough to implement many important operations. For example, it is highly unlikely that a compiled function
would have popq %rdi as its last instruction before ret. Fortunately, with a byte-oriented instruction
set, such as x86-64, a gadget can often be found by extracting patterns from other parts of the instruction
byte sequence.

For example, one version of rtarget contains code generated for the following C function:

void setval_210(unsigned *p)
{

*p = 3347663060U;
}

The chances of this function being useful for attacking a system seem pretty slim. But, the disassembled
machine code for this function shows an interesting byte sequence:

0000000000400f15 <setval_210>:
400f15: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
400f1b: c3 retq

The byte sequence 48 89 c7 encodes the instruction movq %rax, %rdi. (See Figure 3A for the
encodings of useful movq instructions.) This sequence is followed by byte value c3, which encodes the
ret instruction. The function starts at address 0x400f15, and the sequence starts on the fourth byte of

11

the function. Thus, this code contains a gadget, having a starting address of 0x400f18, that will copy the
64-bit value in register %rax to register %rdi.

Your code for RTARGET contains a number of functions similar to the setval_210 function shown above
in a region we refer to as the gadget farm. Your job will be to identify useful gadgets in the gadget farm and
use these to perform attacks similar to those you did in Phases 2 and 3.

Important: The gadget farm is demarcated by functions start_farm and end_farm in your copy of
rtarget. Do not attempt to construct gadgets from other portions of the program code.

5.1 Phase 4

For Phase 4, you will repeat the attack of Phase 2, but do so on program RTARGET using gadgets from your
gadget farm. You can construct your solution using gadgets consisting of the following instruction types,
and using only the first eight x86-64 registers (%rax–%rdi).

movq : The codes for these are shown in Figure 3A.

popq : The codes for these are shown in Figure 3B.

ret : This instruction is encoded by the single byte 0xc3.

nop : This instruction (pronounced “no op,” which is short for “no operation”) is encoded by the single
byte 0x90. Its only effect is to cause the program counter to be incremented by 1.

Some Advice:

• You may only construct gadgets from file rtarget with addresses ranging between those for func-
tions start_farm and end_farm.

• All the gadgets you need can be found in the region of the code for rtarget demarcated by the
functions start_farm and mid_farm.

• You can do this attack with just two gadgets.

• When a gadget uses a popq instruction, it will pop data from the stack. As a result, your exploit
string will contain a combination of gadget addresses and data.

• You can compile farm.c and look at the bytes of it using

gcc -c farm.c
objdump -d farm.o > farm.d
less farm.d

but be aware that the compiled target does optimize a bit and leaves out some of the assembly
instructions (in particular some of the pushes and pops). I recommend using farm.d as a high-level
roadmap, but generally you will want to look at the bytes in gdb directly. You can do this by

12

A. Encodings of movq instructions

movq S, D
Source Destination D

S %rax %rcx %rdx %rbx %rsp %rbp %rsi %rdi
%rax 48 89 c0 48 89 c1 48 89 c2 48 89 c3 48 89 c4 48 89 c5 48 89 c6 48 89 c7
%rcx 48 89 c8 48 89 c9 48 89 ca 48 89 cb 48 89 cc 48 89 cd 48 89 ce 48 89 cf
%rdx 48 89 d0 48 89 d1 48 89 d2 48 89 d3 48 89 d4 48 89 d5 48 89 d6 48 89 d7
%rbx 48 89 d8 48 89 d9 48 89 da 48 89 db 48 89 dc 48 89 dd 48 89 de 48 89 df
%rsp 48 89 e0 48 89 e1 48 89 e2 48 89 e3 48 89 e4 48 89 e5 48 89 e6 48 89 e7
%rbp 48 89 e8 48 89 e9 48 89 ea 48 89 eb 48 89 ec 48 89 ed 48 89 ee 48 89 ef
%rsi 48 89 f0 48 89 f1 48 89 f2 48 89 f3 48 89 f4 48 89 f5 48 89 f6 48 89 f7
%rdi 48 89 f8 48 89 f9 48 89 fa 48 89 fb 48 89 fc 48 89 fd 48 89 fe 48 89 ff

B. Encodings of popq instructions

Operation Register R
%rax %rcx %rdx %rbx %rsp %rbp %rsi %rdi

popq R 58 59 5a 5b 5c 5d 5e 5f

C. Encodings of movl instructions

movl S, D
Source Destination D

S %eax %ecx %edx %ebx %esp %ebp %esi %edi
%eax 89 c0 89 c1 89 c2 89 c3 89 c4 89 c5 89 c6 89 c7
%ecx 89 c8 89 c9 89 ca 89 cb 89 cc 89 cd 89 ce 89 cf
%edx 89 d0 89 d1 89 d2 89 d3 89 d4 89 d5 89 d6 89 d7
%ebx 89 d8 89 d9 89 da 89 db 89 dc 89 dd 89 de 89 df
%esp 89 e0 89 e1 89 e2 89 e3 89 e4 89 e5 89 e6 89 e7
%ebp 89 e8 89 e9 89 ea 89 eb 89 ec 89 ed 89 ee 89 ef
%esi 89 f0 89 f1 89 f2 89 f3 89 f4 89 f5 89 f6 89 f7
%edi 89 f8 89 f9 89 fa 89 fb 89 fc 89 fd 89 fe 89 ff

D. Encodings of 2-byte functional nop instructions

Operation Register R
%al %cl %dl %bl

andb R, R 20 c0 20 c9 20 d2 20 db
orb R, R 08 c0 08 c9 08 d2 08 db
cmpb R, R 38 c0 38 c9 38 d2 38 db
testb R, R 84 c0 84 c9 84 d2 84 db

Figure 3: Byte encodings of instructions. All values are shown in hexadecimal.

13

(gdb) x/500bx start_farm

which will print out 500 bytes starting at the address of the start_farm procedure (note that this
may print some bytes beyond the end of the end_farm procedure; you should only use gadgets
within the the range defined by the start_farm and end_farm procedures).

• As you are debugging your exploit string full of gadget addresses, it can be helpful to verify at runtime
that the bytes at at particular address do in fact match what you expect. You can do this, for example
to examine the bytes starting at address 0x555555555555, with

(gdb) x/10bx 0x555555555555

5.2 Phase 5

Before you take on the Phase 5, pause to consider what you have accomplished so far. In Phases 2 and 3,
you caused a program to execute machine code of your own design. If CTARGET had been a network server,
you could have injected your own code into a distant machine. In Phase 4, you circumvented two of the
main devices modern systems use to thwart buffer overflow attacks. Although you did not inject your own
code, you were able inject a type of program that operates by stitching together sequences of existing code.
You have also gotten 95/100 points for the lab. That’s a good score. If you have other pressing obligations
consider stopping right now.

Phase 5 requires you to do an ROP attack on RTARGET to invoke function touch3 with a pointer to a string
representation of your cookie. That may not seem significantly more difficult than using an ROP attack to
invoke touch2, except that we have made it so. Moreover, Phase 5 counts for only 5 points, which is not a
true measure of the effort it will require. Think of it as more an extra credit problem for those who want to
go beyond the normal expectations for the course.

To solve Phase 5, you can use gadgets in the region of the code in rtarget demarcated by functions
start_farm and end_farm. In addition to the gadgets used in Phase 4, this expanded farm includes
the encodings of different movl instructions, as shown in Figure 3C. The byte sequences in this part of the
farm also contain 2-byte instructions that serve as functional nops, i.e., they do not change any register or
memory values. These include instructions, shown in Figure 3D, such as andb %al,%al, that operate on
the low-order bytes of some of the registers but do not change their values.

Some Advice:

• You may only construct gadgets from file rtarget with addresses ranging between those for func-
tions start_farm and end_farm.

• You’ll want to review the effect a movl instruction has on the upper 4 bytes of a register, as is
described on page 183 of the text. In particular, be aware that sometimes a 4-byte operation works
just as well as an 8-byte operation and may be easier to find as a gadget.

• The official solution requires eight gadgets (not all of which are unique).

14

• If you are struggling to find gadgets that match what you need, don’t forget that you can ignore
anything that in the appropriate context would simplify to a nop instruction.

• A suggested approach is to have the null-terminated string representation of your cookie as the last
element in your exploit string. Then the goal with the gadgets is to move rsp (or esp) to another
register and to add the appropriate offset to the register to compute the address of that cookie string,
moving that final value to rdi before calling touch3. An example structure might be something like:

– /* padding */

– /* gadgets */

* /* Pop to rax */

* /* Stack data (use a constant to define an offset) */

* /* Move from eax to ecx */

* /* Move from ecx to edx */

* /* Move from edx to esi */

* /* Move rsp to rax */

* /* Move from rax to rdi */

* /* Add rsi+rdi to get address for string in rax (think lea) */

* /* Move address from rax to rdi */

– /* address of touch3 */

– /* cookie str */

Good luck and have fun!

6 Submission

For this lab, you will need to submit all 5 text files containing your 5 exploit strings (in their hex format, not
the raw format) in a single ZIP file via Moodle by the project deadline. To do this, in the directory on the
Portneuf server where your files are located, zip up the 5 files using the command

zip lastname_firstname_all_phases.zip exploit[1-5].txt

exactly as written with your last and first name inserted appropriately.

This creates a zip file that you need to then copy to your local computer prior to uploading to Moodle.
To copy a file from the Portneuf server to your local computer, use the same scp command you have used
previously (from your local computer) except the first argument is the path to your zip file on the Portneuf
server and the second argument is to somewhere on your local computer (e.g., the path to your Downloads
directory). For example, for me I would type on my local machine:

scp bodipaul@portneuf.cose.isu.edu:/home/bodipaul/CS 1337/assignments/lab 5/target3/bodily paul allphases.zip /Users/bodipaul/Downloads

You can then manually upload the zip folder to Moodle.

Note: you do not need to worry about using git on this lab.

15

6.1 Troubleshooting with scp

If you are having trouble with scp, the following are solutions to common mistakes I have seen students
make:

• Make sure you are running the scp command on your local machine and not on your server. Your
local machine is (presumably) not set up to be a server, so you can’t send things to it, but you can pull
things to it. Hence why you have to run the scp command from your local machine, specifying the
remote file path as the first operand with the remote server username and domain as a prefix.

• Make sure you don’t have any extra spaces in the command (the command line uses spaces to identify
separate operands).

• Make sure you are signed into the VPN. scp runs on the same protocols as ssh, and since Portneuf is
on a private network, you must be logged into the VPN for scp to be able to find it.

A Using HEX2RAW

HEX2RAW takes as input a hex-formatted string. In this format, each byte value is represented by two hex
digits. For example, the string “012345” could be entered in hex format as “30 31 32 33 34 35
00.” (Recall that the ASCII code for decimal digit x is 0x3x, and that the end of a string is indicated by a
null byte.)

The hex characters you pass to HEX2RAW should be separated by whitespace (blanks or newlines). We
recommend separating different parts of your exploit string with newlines while you’re working on it.
HEX2RAW supports C-style block comments, so you can mark off sections of your exploit string. For
example:

48 c7 c1 f0 11 40 00 /* mov $0x40011f0,%rcx */

Be sure to leave space around both the starting and ending comment strings (“/*”, “*/”), so that the
comments will be properly ignored.

If you generate a hex-formatted exploit string in the file exploit#.txt (where # is the number of the
phase for the exploit string), you will use the following steps to apply the raw string to CTARGET or RTAR-
GET:

1. Convert the hex-formated file to raw and store the resulting raw string using I/O redirection:

unix> ./hex2raw -i exploit#.txt > exploit#-raw.txt

2. You will then run your target in GDB:

unix> gdb ctarget
(gdb) run < exploit#-raw.txt

Remember, the exploit code only works when the target is run from within GDB.

16

B Generating Byte Codes

Using GCC as an assembler and OBJDUMP as a disassembler makes it convenient to generate the byte codes
for instruction sequences. For example, suppose you write a file example.s containing the following
assembly code:

Example of hand-generated assembly code
pushq $0xabcdef # Push value onto stack
addq $17,%rax # Add 17 to %rax
movl %eax,%edx # Copy lower 32 bits to %edx

The code can contain a mixture of instructions and data. Anything to the right of a ‘#’ character is a
comment.

You can now assemble and disassemble this file:

unix> gcc -c example.s
unix> objdump -d example.o > example.d

The generated file example.d contains the following:

example.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <.text>:
0: 68 ef cd ab 00 pushq $0xabcdef
5: 48 83 c0 11 add $0x11,%rax
9: 89 c2 mov %eax,%edx

The lines at the bottom of the file show the machine code generated from the assembly language instructions.
Each line has a hexadecimal number on the left indicating the instruction’s starting address (starting with
0), while the hex digits after the ‘:’ character indicate the byte codes for the instruction. Thus, we can see
that the instruction push $0xABCDEF has hex-formatted byte code 68 ef cd ab 00.

From this file, you can get the byte sequence for the code:

68 ef cd ab 00 48 83 c0 11 89 c2

This string can then be passed through HEX2RAW to generate an input string for the target programs. Alter-
natively, you can edit example.d to omit extraneous values and to contain C-style comments for readability,
yielding:

17

68 ef cd ab 00 /* pushq $0xabcdef */
48 83 c0 11 /* add $0x11,%rax */
89 c2 /* mov %eax,%edx */

This is also a valid input you can pass through HEX2RAW before sending to one of the target programs.

References

[1] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Systems, lan-
guages, and applications. ACM Transactions on Information System Security, 15(1):2:1–2:34, March
2012.

[2] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made easy. In USENIX Security
Symposium, 2011.

18

	Introduction
	Getting setup
	ISU VPN Access
	GlobalConnect VPN access for Linux Users
	Troubleshooting GlobalConnect VPN

	Reminder to Windows users
	Getting Your Lab Files
	Files in the tar

	Target Programs
	Phases 1-3: Code Injection Attacks
	Phase 1
	Allowable exploits

	Phase 2
	Phase 3

	Phases 4-5: Return-Oriented Programming
	Phase 4
	Phase 5

	Submission
	Troubleshooting with scp

	Using Hex2raw
	Generating Byte Codes

