Homework 4
CS 4481

Instructions You will turn in an electronic copy of this homework. The written answers should go in
hw4.pdf and assembly code should go in add.asm, fee.asm, and array.asm. Zip all files into hw4.zip and
submit using Moodle.

1. Memory layout affects the addresses assigned to variables. Assume that character variables have no
alignment restriction, short integers must be aligned to halfword (2 byte) boundaries, integers must
be aligned to word (4 byte boundaries, and long integers must be aligned to doubleword (8 byte)
boundaries. Consider the following set of declarations:

char a;
long int b;
int c;
short int d;
long int e;
char f;

Write a memory map (how the memory is laid out) for these variables with assumptions described
below. For example, if a is laid out from bytes i to j and b is from k to 1, then your answer would be
“(i-j) a (k-1) b”.

(a) (5 points) Assuming that the compiler cannot reorder the variables.

(b) (5 points) Assuming the compiler can reorder the variables to save space.

2. (1 point each) For each of the following types of variable, state where in memory the compiler might
allocate the space for such a variable. Possible answers include registers, activation records, static data
areas, and the runtime heap.

(a) A variable local to a procedure
(b) A global variable
(¢) A dynamically allocated global variable
(d)
)

(e) A compiler-generated temporary variable

A formal parameter

3. (10 points) Write MIPS code that loads the values 3 and 4 into registers, adds them, and prints the
result (the value 7). You will probably want to use the system call 1 (print_int). Use QtSpim to test
it. Place your code in add.asm.

4. (10 points) Write MIPS code for the following C- code. You will need a label for the fee() function
and will pass in formal arguments using the stack. Do not pass the parameters in with registers. Recall
that the stack pointer grows down, that is, from large address to small address. Place your code in
fee.asm.

int fee(int a, int b) {

return atb;

void main() {
print (fee (3, 4));

}

Your assembly code should have the following structure:

main :

put 3 and 4 on the stack using the register $sp

call fee. You’ll probably want to use the jal
store the current address in $ra
load results from stack to registers
print result
exit
fee:
copy a and b from stack to local
add a and b
place result on stack
return using jr instruction

5. (15 points) Write MIPS code for the following C- code. You will not need a loop for allocating or
initializing the array, but you will need a loop to sum the elements. Allocate the array on the stack
and pass a dope vector as the formal argument to fee(). The dope vector will store the address of the
array and the number of elements in the array. Note that it will store the address of the array and not
the offset of the array from $sp. The dope vector will be on the stack. The multiplication instruction

is mul. Place your code in array.asm.

int fee(int arr[]) {
int sum = 0;
for (int i = 0; i < length(arr); ++i) {
sum = sum + arr[i];

}

return sum;

}

void main() {
int a[3];
al0] = 1;
a[l] = 3;
al[2] = 5;
print (fee(a));

registers

instruction to

