
CS4481
Project 6 - Formatter

In this project you will implement a formatter for the so-called C- language. The grammar has
been written for you. You will

• Compile the grammar into Java code using Antlr
• Build an abstract syntax tree (AST)
• Build a hierarchical symbol table
• Print an error if a variable is used without having been defined.
• Traverse through the AST, outputting the code formatted nicely.

Setup
1. Load the Formatter project into your IDE. You should be able to run it on data/test1.c

(passed as a commandline parameter) without errors (but it won’t really do anything). Fa-
miliarize yourself with Formatter.java.

2. If you haven’t already installed Antlr, use the instructions in project 2 to install it.

Compile grammar
1. Find grammar/Cminus.g4. This is the grammar for C-. You will be looking at this file a

lot.
2. At the command-line, run

java -jar [...]/antlr-4.5.1-complete.jar
-o parser -package parser Cminus.g4

where [...] is the path to your antlr jar file. Within the directory from which you run this
command, a directory called “parser” will be created containing Java files that parse C-
programs. Note what this has done: it has “written” a Java program that is a compiler for the
specific language that was given in the input file (i.e., C- programs).

3. Copy parser to your src directory (you may need to refresh your IDE).

1



Build AST
1. Copy the following code into your format method.

ANTLRInputStream chars = new ANTLRInputStream(new FileReader(filename));
CminusLexer lexer = new CminusLexer(chars);
CommonTokenStream tokens = new CommonTokenStream(lexer);
CminusParser parser = new CminusParser(tokens);
parser.setBuildParseTree(true);
ProgramContext programCtx = parser.program();

programCtx is the root node of the parse tree that is built by Antlr as a result of parsing
the file passed in to the commandline (i.e., data/test1.c).
Remember that while parse trees can detect errors in syntax, they cannot tell, for example,
whether a variable has or has not been previously declared before it is used. For this purpose
we need to build a (hierarchical) SymbolTable to test whether each variable has been
declared or not. This is one of the goals of this project.
Before worrying about the SymbolTable, however, the primary, initial goal is to create an
abstract syntax tree from the parse tree that you are given (see section 5.2 in the text for a
review of ASTs). You should be sure that your AST is working completely before trying to
worry about using the Symbol Table to detect declaration errors.
Note that programCtx has a method List<DeclarationContext> declaration().
This returns a list of all declarations in the parsed program (hence the ‘+’ in the program
-> declaration+ rule in Cminus.g4).

2. Just to get you familiar with the what is in programCtx, try the following code. Get
very familiar with it and understand exactly what it does. See how it corresponds to the
production rules in Cminus.g4. Make changes and see what happens. The project will go
much more smoothly if you do. As a litmus test for how well you understand the code, what
is the purpose of the null-check in the following code? Note: be sure to add the -v option
when testing so that you see the fine statements from LOGGER.

DeclarationContext declarationCtx = programCtx.declaration().get(0);
VarDeclarationContext varDeclarationCtx = declarationCtx.varDeclaration();
if (varDeclarationCtx != null) {

String type = varDeclarationCtx.typeSpecifier().getText();
List<VarDeclIdContext> ids = varDeclarationCtx.varDeclId();
for (VarDeclIdContext id : ids) {

LOGGER.fine(type + " " + id.getText());
}

}

3. As you look at Cminus.g4, notice that ANTLR syntax replaces a typical recursive grammar
rule
andExpression : andExpression ’&&’ unaryRelExpression | unaryRelExpression ;

with the much simpler, iterative
andExpression : (unaryRelExpression ’&&’)* unaryRelExpression ;

This makes traversing the parse tree far simpler.
4. Once you have some understanding of how the parse tree works, start setting up your AST

nodes and populating them with values from the parse tree. Note you will have one class
for each possible type of AST node. What children each type of node has depends on the
type of node that it is (hence why you will be looking at the grammar file a lot). I strongly
recommend putting all AST node files in a separate package called ast. Note the many of
the classes for nodes already exist in ast. These classes are just to get you started. You will

2



add more classes such as FunDeclaration, CompoundStatement and others (which
each correspond to grammar symbols).

5. Gradually populate your AST nodes with functions similar to the following:
public Program buildProgram(ProgramContext programCtx, SymbolTable symbolTable) {
this.symbolTable = symbolTable;
List<Declaration> declarations = new ArrayList<>();
for (DeclarationContext declarationCtx : programCtx.declaration()) {

if (declarationCtx.varDeclaration() != null) {
VarDeclarationContext vdc = declarationCtx.varDeclaration();
declarations.add(getVarDeclaration(vdc, false));

} else if (declarationCtx.funDeclaration() != null) {
FunDeclarationContext fdc = declarationCtx.funDeclaration();
declarations.add(getFunDeclaration(fdc));

}
}
Program program = new Program(declarations);
return program;

}

private VarDeclaration getVarDeclaration(VarDeclarationContext varDecl, boolean isStatic) {
VarType type = VarType.fromString(varDecl.typeSpecifier().getText());
List<String> ids = new ArrayList<>();
List<Integer> arraySizes = new ArrayList<>();
for (VarDeclIdContext idCtx : varDecl.varDeclId()) {

if (idCtx.NUMCONST() != null) {
ids.add(idCtx.ID().getText());
arraySizes.add(Integer.parseInt(idCtx.NUMCONST().getText()));

} else {
ids.add(idCtx.ID().getText());
arraySizes.add(-1);

}
}
VarDeclaration vd = new VarDeclaration(type, ids, arraySizes, isStatic);
for (String id : ids) {

this.symbolTable.addSymbol(id, new SymbolInfo(id, type, false));
}
return vd;

}

I recommend that you have these functions in a separate class (I created a class called
ASTBuilder).

Symbol table and error reporting
1. As you traverse through the parse tree and build the AST, build your hierarchical symbol

table. Two classes, SymbolInfo and SymbolTable, are included that you can use if
you like.

2. To populate the symbol table, add a symbol every time a variable or function is declared,
and with every function parameter.

3. To check for errors, check the symbol table every time a variable is used or a function is
called. If I had a MutableContext (one of the symbols in the grammar) called mc and the ID
wasn’t found in the symbol table, then I would print an error as follows:
LOGGER.warning("Undefined symbol on line " + mc.getStart().getLine() + ": " + id);

3



Formatter
1. Notice that most AST node classes have a method called toCminus. This method adds

formatted code to builder. Notice that Program.toString() calls these functions.
As you add AST node classes, make sure each one has a toCminus method.

2. When you run your formatter on data/test1.c you should get results identical to what is
found in data/test1.out. You can test one of two ways:

(a) Choose Run > Clean and build project. Then at the command line:
java -jar dist/Formatter.jar data/test1.c

(b) Set the command-line parameter data/test1.c at Run > Set project configuration
> Customize... and then run with F6.

3. Your output must match data/test1.out. You should have no extra output beyond what is
in this file. For debugging purposes, you may want to add debug output. To do this, use
LOGGER.fine(msg) and add -v to the command-line. To make things print to match the
desired output, use LOGGER.info(msg).

4. Note that the desired bracing style in the formatter automatically formats with opening
braces on their own line.

Submission

When you are done, zip your entire project into project3.zip and submit using Moodle.

Scoring
1. 5% - Compiling grammar with Antlr and importing code
2. 30% - AST
3. 25% - Formatted output
4. 30% - Symbol table and error reporting
5. 10% - Coding quality and style

4


