
CS4481
Project 7 - Compiler

In this project you will implement a full compiler for the C- language. You can choose to start
with the code formatter you wrote in project 6 or you can use the starter code provided here (it is
strongly recommended to use the provided starter code). Then you will write Java code to generate
MIPS assembly code. We will not be implementing a compiler for C- in its entirety. See the scoring
section below for a list of features we will support. Additional features can be implemented for
extra credit.

A note on activation records

The provided starter code places the return value of the function as the first value in the activation
record. Formal parameters, then register saves, then local variable declarations follow.

Example 1

Consider the following C- code:
int add(int x, int y) {

return x + y;
}

void main() {
int a, b, c;
add(3, 4);

}

The code would result in something like the following in memory where r is the return value for
add(). $sp is the stack pointer when add() is called.

<--- stack|
| <--- add() --|-- main() --|
| ...$s0 x y r | ... c b a |

ˆ
|
$sp

In the above example there are four symbol tables. One for main’s parameters, one for main’s
compound statement, one for fee’s parameters, and one for fee’s compound statement. Each

1

variable offset is stored relative to its containing symbol table. So b has an offset of -8 and x has
an offset of -12. Then the question becomes, how do we access b from inside of add()?

Take a look at SymbolTable.find(). This method looks for a variable and returns a SymbolInfo
object. However, note that it does not necessarily return the local SymbolInfo, but rather, may
return a new SymbolInfo with the address offset that takes into account where the stack pointer
is.

To make this concrete, consider the example above. When inside add() I want to access b. The
local offset of b is -8 (as if $sp was pointing at main(). But with $sp pointing to add(), we
need to add the size of main()’s activation record to the offset. Suppose the activation record for
main() is size 24. Then the true offset for b when inside add() is −8+ 24 = 16. This is the
value that is returned by SymbolTable.find().

Example 2

Consider another example:
int fee() {

int a;
a = 3;
{
int b;
{

int c;
c = a + 4;
println(c);
return c;

}
}

}

main() {
fee();

}

In the inner-most compound statement, the stack might look something like this:

<--- stack|
| | |<--- fee() --|-- main() --|
| c | b | $s1 $s0 a r | ... |

ˆ
|
$sp

Again, $s1 and $s0 are registers that are stored temporarily on the stack and r is the location of
the return value. Note that we have two unnamed “activation records” corresponding to the two
nested compound statements. Variable offsets are computed as described in the previous example.
That is, the offset of a would be −8+16+4 = 12 where -8 is the local offset of a, 16 is the size
of the fee() activation record, and 4 is the size of the first unnamed activation record.

Another issue to consider is return statements. The return statement needs to know two things:
where on the stack to place the return value, and where on the stack to assign $sp. Both of
these can be accomplished by calling SymbolTable.returnValueOffset(). In example
2, when the return statement is made, the return value offset is −4+16+4 = 16. You can then
determine where to restore $sp to by adding the size of the return value.

2

Note that if a function returns void, SymbolTable.returnValueOffset() may return 0
or the offset to the function’s activation record base address. This shouldn’t require any special
handling.

Tasks
1. Download the QtSpim simulator if you haven’t already. Get familiar with the software using

the assembly files you wrote for homework 4.
2. Use the starter code in the downloaded project src directory. You will be running from the

“Compiler.java” class, not “Formatter.java” as in project 6.
3. You should be able to run your starter code on data/test1.c without errors.
4. The best approach is to add a method called toMIPS() to the CminusElement interface,

much like toCminus(). This has been done for you in the starter code. It should be
something similar to the following:

/**
* Emits MIPS code.

*
* @param code Use this builder to emit code to the .text section of the MIPS

* file.

* @param data Use this builder to emit code to the .data section of the MIPS

* file.

* @param symbolTable Keeps track of variable and function symbols.

* @param regAllocator Allocates registers on demand. Each C- function should

* use fresh registers.

* @return The result of emitting MIPS code. See comments in EvalResult.

*/
public EvalResult toMIPS(StringBuilder code, StringBuilder data,

SymbolTable symbolTable, RegisterAllocator regAllocator);

You can initially implement your new method in each AST node as follows:
@Override
public EvalResult toMIPS(StringBuilder code, StringBuilder data,

SymbolTable symbolTable, RegisterAllocator regAllocator) {
builder.append("# BinaryOperator not supported");
return EvalResult.createVoidResult();

}

By doing this you will always output valid MIPS code (your stub code is commented out
with the # character).

5. The provided starter code includes implementations of toMIPS() for the following classes:
BoolConstant, ExpressionStatement, FunDeclaration, ParenExpression,
and Program. The implementation in FunDeclaration and Program should be par-
ticularly helpful in getting started.

6. The starter code writes MIPS code both to stdout and to a file called Cminus.asm.
7. In the starter code you will need to handle both println and calls to functions defined in

the code. This should be handled in Call.toMIPS(). I recommend that you implement
the println() function first. That way, you can use println() to test the rest of
your code. The function println() takes one argument: a variable, char constant, bool
constant, int constant or string constant.

8. Note that FunDeclaration and CompoundStatement both have a SymbolTable
as a data member. The symbol table was added when the node was constructed. This will
be helpful as you emit MIPS code because the symbol table not only stores symbols and

3

their locations in memory (as offsets from $sp) but also stores the activation record size.
Important: in the starter code, entering a function enters two nested symbol tables: one
for the function parameters and one for the compound statement containing the function’s
implementation.

9. In toMIPS(), you may not need to comment much of your Java code if you emit MIPS
comments that explain what is going on.

10. If you do any extra credit work (see below), then include a README.txt file explaining
what you did. Please also include a test file or two.

11. C- doesn’t support function overloading. Every function must have a unique name.

Submission

When you are done, zip your entire project into project7.zip and submit using Moodle.

Scoring
1. 10% - println
2. 10% - Basic arithmetic using numbers
3. 10% - Variables
4. 30% - Function calls
5. 30% - Parameters
6. 10% - Coding quality and style

Extra credit:

1. 3% - if
2. 5% - while
3. 2% - char data types
4. 10% - arrays
5. 2% - relational operators
6. 2% - unary relational expressions
7. 4% - complex assignments (+=, -=, *=, /=, ++, –)

4

