Proof Paper #2 Rough Draft

Paul Bodily
August 21, 2014

1 Background

Accurate and efficient genome assembly algorithms are essential in unlocking the so-
lutions to challenges posed by genetic disease, genetic engineering, and even next-
generation digital information storage [1]. The term genome describes a complete set
of DNA in the cell of an organism. Within the genome, DNA is organized as a distinct
set of molecules called chromosomes, the number of which is a unique characteristic of
a species. Each chromosome is composed of a sequence of nucleotide bases, or sim-
ply nucleotides, which encode all of the functionality of a living organism. The goal
of genome assembly is to ascertain the identity of this sequence and is prerequisite to
making inferences about the complex mechanisms that govern life.

DNA is inherently directional, which means that defining the head of a sequence
(called the 5" or five prime end) and the tail of a sequence (3') is as essential as defining
the nucleotide residues themselves. By convention, the forward strand of a sequence
sT is written in the 5 to 3’ direction (the same order in which DNA is biologically
replicated, transcribed, and sequenced); however, as DNA is double-stranded, it is
always implied (though usually not written) that for any sequence s™, an equally viable
reverse-complement sequence s~ exists whose 5’ to 3’ direction is opposite that of s™.
We will define moving in the 5 to 3’ direction as moving downstream and 3’ to 5’ as
moving upstream (see Fig. 1).

Predominant next-generation sequencing technologies are only capable of sequenc-
ing (i.e., ascertaining the sequence of nucleotide residues of) short DNA fragments
called reads. Consequently the genome assembly process requires first randomly frag-
menting several copies of the chromosomes (which in humans are on the order of hun-
dreds of millions of nucleotides in length) into small segments to be sequenced. Then

downstream ———
5' ACCCGGCGGCAGGAGAGGG 3'

, € LDODDIDIIDILIDILIOLIDD ,§
<+————————— weaI3SUMOP

Figure 1: By convention DNA is written 5’ to 3’. DNA is double-stranded with 5’ to
3’ directionality of the reverse-complement strand being opposite that of the forward
strand.



Read 1: ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGC

Read 2: CCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCA

Read 3: CCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAG

Read 4: CGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGA
Read 5: GGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAA
Read 6: GCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAG
Read 7: CGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC

Consensus: ACCCGGCGGCAGGAGAGGGGATGAAGATGGCGGACGCGAAGCAGAAGC...

Figure 2: The contigging phase overlaps short DNA reads to determine the consensus
sequence of the larger derivative molecule.

confident overlaps are found between the sequenced reads to recover the chromosomal
sequence. This process is known as contigging (see Fig. 2).

In reality, insufficient molecular sampling and repetitive regions in the DNA pre-
vent full chromosomal reconstruction. It is thus commonplace for assembly algorithms
to produce a large set of partially-reconstructed chromosomes termed contigs. Contigs
must then be oriented and positioned relative to one another in order to reconstruct full
chromosomes through scaffolding.

Scaffolding uses relatively long fragments of an approximately known length whose
ends are sequenced (called paired reads) to infer positional and orientational relation-
ships between contigs (see Fig. 3). A paired read may match to either the forward
sequence or the reverse-complement sequence and thus there are four possible ways
in which two adjacent contigs may be oriented relative to one another (see Fig. 3c).
A scaffolding of two contigs is defined as the relative positioning and orientation of
contigs as indicated by paired read evidence. A particular scaffolding of two contigs
may be supported by multiple paired reads, which increases the confidence in the scaf-
folding.

The problem of scaffolding contigs is commonly modeled as a graph (i.e., a scaffold
graph) where vertices are contigs and edges indicate scaffoldings of contigs, weighted
by the amount of supportive evidence for the scaffolding. In the contigging phase,
reads from repetitive regions in the genome will overlap and combine into a single
contig. Contigs representing repetitive sequence naturally suggest varied scaffoldings
that create conflicts in the scaffold graph. Sequencing errors create additional com-
plexity, suggesting contig positionings and/or orientations that are inconsistent with
other scaffolding evidence. In the graph that results from these complications, the goal
becomes finding a maximal path that incorporates each contig sequence once. The
problem we are concerned with, the contig orientation problem, is a preparatory step to
finding such a path. In the reconstruction, it is often assumed that each sequence may
be included in the path only once (i.e., loops are disallowed) and that therefore each
contig will be assigned a single orientation in the reconstruction. The contig orienta-
tion problem describes the preliminary challenge of assigning contig orientations so as
to minimize conflicting orientation evidence. More specifically, the goal is to remove
the minimum number of edges from the scaffold graph so that the remaining subgraph



400 residues

—_— - —_
70 residues 70 residues

(a) Paired Reads

400 residues
\

—— T aam——2>

Contig A Contig B
(b) Scaffolding

oA o) > C ;ntig B (forwara

Contig A (reverse) S _C;ntig B (forward)

ey C ;ntig B (reverse)

CoeAtevese) 2 C ;ntig B (reverse)

(c) Orientation of Contigs in Scaffolds

Figure 3: a) In general, paired reads are reads that derive from a long DNA fragment
whose ends have been sequenced (arrow indicates the 5’ to 3’ directionality). b) Paired
reads are used to infer the relative position and orientation of contigs to which the
ends find matching locations. c¢) Although the paired reads have a fixed position and
orientation, depending on whether an end aligns to a contig’s forward (black) or reverse
strand (grey), contig pairs may be oriented in four different ways within a scaffold.

suggests a single consistent orientation of all vertices in the graph [3].

2 Definitions

In this section we formally define the contig orientation problem as the MAX-DIR
problem. Our theorem, detailed formally in section 3, states that this problem is NP-
complete.

2.1 Bidirected Scaffold Graphs

A bidirected graph (as introduced by [2]) is formally defined as an undirected multi-
graph G with a set of vertices V" and a set of bidirected edges E (recall that a multigraph
allows multiple edges between two given nodes or equivalently an edge weight). A
bidirected edge e is a five-tuple (v;, 0;,v;, 05, w) consisting of two vertices, v; and v;,
the weight of the edge, w, and two endpoint orientations, o; and o;, one with respect to
each of its vertices. An endpoint orientation may be either positive or negative, defining
e as either positive-incident or negative-incident to the corresponding endpoint.



Figure 4: There are three forms of bidirected edges: introverted, extraverted, and di-
rected.

In the graphical representation of a bidirected edge e, we represent positive-incidence
with an arrow pointing out of the vertex and negative-incidence with an arrow point-
ing in to the vertex. Based on this representation, we say that e is: introverted if
positive-incident to both endpoints; extraverted if negative-incident to both endpoints;
and directed if it is positive-incident to one endpoint and negative-incident to the other
(see Fig. 4). A directed graph is a special case of a bidirected graph in which all edges
are directed edges.

A valid (v1,vg)-walk is a sequence v1,e1,. . ., Ux—1,€5—1,V; Where e; is an edge in-
cident to v; and v;41 and for all 2 < ¢ < k — 1, e;—1 and e; have opposite endpoint
orientations incident to v; (see Fig. 5).

Based upon this definition, we define a bidirected scaffold graph for a set of contigs
C and a set of weighted scaffoldings F' as a bidirected graph G=(V,FE) in which vertex
v; € V represents contig ¢; € C' and a weighted bidirected edge e=(v;, 0;, v;,0;,w)
represents the scaffolding f € F' of contigs ¢; and c;, weighted by the number of
supporting paired reads (e.g., see Figure 6b). The endpoint orientations, o; and o;, are
determined by the relative orientation of the forward strands of ¢; and c; in f—if the
forward strands of ¢; and c; are oriented in the same direction, then ¢ is a directed edge
that is positive-incident to the vertex representing the upstream contig; if the forward
strands are oriented away from one another (i.e., 5’ ends are proximal), then e is an
extraverted edge; and if the forward strands are oriented towards one another (i.e., the
3’ ends are proximal), then e is an introverted edge.

Two critical specifications must be made at this point to the bidirected scaffold
graph in order that our biological constraints are maintained. First, the 5’ to 3’ direc-
tionality of a DNA molecule must be consistent along the entire length of the sequence.
This means that introverted and extraverted edges, both of which represent internally
inconsistent 5’ to 3’ directionality of the forward strand, violate a biological constraint.
As per this definition, only directed edges are considered valid in the final scaffold
reconstruction.

The second specification, however, is that because the biological molecule allows
us to consider a contig ¢; as either its forward strand cj' or its reverse-complement



(a) Valid Walk (b) Invalid Walk (¢) Rev. Orientations

Figure 5: (a) In a bidirected scaffold graph, a valid walk enters and exits a node through
oppositely-oriented arrows. (b) An invalid walk enters and exits a node through same-
oriented arrows. (c) Reversing all edge-orientations adjacent to a node results in the
same potential valid walks. This is biologically equivalent to selecting the reverse-
complement s~ in place of the forward sequence s+.

strand c; , for any vertex v; € V' we can arbitrarily select between the forward-orientation
assignment v;" and the reverse-orientation assignment v; in order to ensure consis-
tency of the 5’ to 3’ directionality of contigs ¢; and ¢; in scaffolding f (the forward-
orientation assignment is the vertex configuration as it is initially constructed). We will
refer to this selection as the contig-orientation assignment of c; or vertex-orientation
assignment for v;. Furthermore we refer to a contig-orientation assignment for all
contigs in C' (or vertices in () as a contig-orientation assignment of C (or vertex-
orientation assignment of G).

Switching between vertex-orientation assignments v and v;~ for vertex v; is equiv-
alent to flipping all endpoint orientations incident to v; (see Fig. 5c), thus potentially
rendering introverted and extraverted edges as directed edges, or vice versa. We will
refer to a vertex v; with possible vertex-orientation assignments v;” and v; as an ori-
entable vertex. As the forward strand c¢; of each assembled contig ¢; is arbitrarily
given as input, each corresponding vertex v; is initially assumed to be assigned the
vertex-orientation v;" .

The goal of finding a maximal contig-orientation assignment for a graph is not
equivalent to the goal of finding a maximal walk through the scaffold graph (i.e., cre-
ating linear scaffolds). There are several cases (e.g., heterozygous sequences and/or
repetitive sequences on different chromosomes) in which a single connected contig-
graph component can account for multiple walks resulting in multiple scaffolds that
belong in the final reconstruction. Indeed further algorithmic elucidation of reconstruc-
tive paths is required following the resolution of the contig orientation problem. What
will be guaranteed from resolution to the contig orientation problem is that any valid
walk chosen from the subgraph of all nodes and all directed edges will have consistent
internal orientation of all constituent contigs. A maximal solution to the contig orien-
tation problem seeks to accomplish this while maximizing the weight of the directed
edges.



2.2 MAX-DIR Problem

We formally state the corresponding decision problem as follows (see also Fig. 6b):
MAX-DIR = {(G,k) | G is a bidirected graph with orientable vertices, and there
exists a vertex-orientation assignment for GG yielding k directed edges}
Depending on whether the preferred bias is towards including more weight or more
edges, the weighted and unweighted versions of this problem (respectively) become
important.

3 Theorem

3.1 Theorem Statement

MAX-DIR is NP-complete.
Proof. To prove this theorem we must demonstrate that

1. MAX-DIR € NP and
2. VL € NP, L <P MAX-DIR.

We can easily show that MAX-DIR is in NP by noting that given a vertex-orientation
assignment to a bidirected graph with orientable vertices and an integer k, we can check
in polynomial time whether the assignment yields k directed edges.

To prove that VL € NP, L gf; MAX-DIR, we need merely show that some other
NP-complete problem is many-one reducible in polynomial time to MAX-DIR. We will
demonstrate that MAX-CUT, a well-known NP-complete problem, has such a reduc-
tion to MAX-DIR. Recall that the decision problem corresponding to the MAX-CUT
problem is as follows:

MAX-CUT = {(M, k) | M is a multigraph with a cut of size k}

where a multigraph M =(V ,F) is a graph allowing multiple edges between two nodes
and a cut in a graph is a partition of V' into two distinct subsets .S and 7" (see Figure 6a).
The size of the cut is the number of edges e € E which have an endpoint in .S and an
endpoint in 7. We will describe a polynomial-time-bounded construction that maps
an instance (M ,k) of MAX-CUT to some bidirected graph with orientable vertices G
and positive integer k such that M has a cut of size at least k if and only if G has a
vertex-orientation assignment yielding & directed edges. Let V and F be the vertex
and edge sets of M and let V' and E’ be the vertex and edge sets of G which we will
create. The construction of G consists of the following steps (see Figure 6b):

1. LetV'=V.

2. For each edge e € E linking vertices v;,v; € V, we create a bidirected edge e
linking v; and v (in V') where e is negative-incident to both v; and v’.



(a) MAX-CUT Instance (b) MAX-DIR Construction

Figure 6: An instance of the MAX-CUT problem shown with the reduction to MAX-
DIR.

Clearly the construction takes polynomial time.

First we show that if M has a cut of size k, then G has a vertex-orientation as-
signment yielding k directed edges. If M has a cut of size k (e.g., Figure 7a), then
there is a partition of V' into two distinct subsets .S and 7" such that there are k edges
which have an endpoint in S and an endpoint in T'. Note that by partitioning V'’ into
the same subsets, S and 7', and assigning forward-orientation to all vertices in S and
reverse-orientation to all vertices in 7', k bidirected edges (those analogous to the cut
edges of M) are rendered directed edges (see Figure 7b). All others remain either in-
troverted or extraverted edges. It follows from the same line of reasoning that if G has
a vertex-orientation assignment yielding & directed edges, then M has a cut of size k.

This completes the proof that MAX-DIR is NP-complete.

3.2 Corollary

MAX-DIR <! MAX-CUT.

Because MAX-CUT is NP-complete and MAX-DIRENP, it follows naturally that
this corollary is true. In fact, for any two NP-complete problems, A and B, it will
always be true that A STIZ B and B §ﬁ A. An alternative way to express this is
to say that A is many-one equivalent in polynomial time to B (i.e., A = B). The
polynomial-time reduction function from MAX-DIR to MAX-CUT is slightly more
involved than the reduction from MAX-CUT to MAX-DIR, but the details are beyond
the scope of this manuscript. Suffice it to say that such a function does exist, as proven
by the corollary.



(a) An Example Cut (b) Corresponding Vertex-Orientation Assignment

Figure 7: A possible cut of the multigraph in 6a and the corresponding vertex-
orientation assignment of 6b. Note that both the weight of the cut and the sum weight
of the directed edges are the same.

4 Discussion

The proof that MAX-DIR is NP-complete is useful because it signals that a heuristic
will be required to solve an instance of MAX-DIR on any reasonably large input. The
corollary is useful because it allows us to reduce any MAX-DIR to a MAX-CUT prob-
lem. Thus, rather than “reinventing the wheel” to solve instances of the MAX-DIR
problem, we can apply existing MAX-CUT heuristics (of which there are many good
ones) to obtain efficient, accurate solutions.

In my research I have applied an efficient MAX-CUT heuristic to several instances
of the MAX-DIR problem. My findings suggested that in fact a simple greedy algo-
rithm performs better than the heuristic due to the particular nature of the graphs being
studied. Thus, being able to apply existing algorithms may not always be advantageous,
even when such algorithms perform exceptionally well in other contexts.

References

[1] George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital infor-
mation storage in dna. Science, 337(6102):1628-1628, 2012.

[2] Jack Edmonds and Ellis L. Johnson. Matching: A well-solved class of integer
linear programs. In Combinatorial structures and their applications (Gordon and
Breach. Citeseer, 1970.

[3] Mihai Pop, Daniel S Kosack, and Steven L Salzberg. Hierarchical scaffolding with
bambus. Genome research, 14(1):149-159, 2004.



