Homework 4 CS 3385

- 1. Show the recursion tree for T(n) = 4T(n/2) + c and derive the solution using big-Theta notation. Note: the recurrence is $not \ T(n) = 4T(n/4) + c$.
- 2. Show the recursion tree for T(n) = 4T(n/4) + c and derive the solution using big-Theta notation. Explain the intuition why this result is different from the solution of T(n) = 4T(n/2) + c.
- 3. Show the recursion tree for T(n) = 4T(n/4) + n and derive the solution using big-Theta notation. Explain the intuition why this result is different from the solution of T(n) = 4T(n/4) + c.
- 4. Use the master method to give tight asymptotic bounds for the following recurrences.
 - (a) T(n) = 2T(n/4) + 1
 - (b) $T(n) = 2T(n/4) + \sqrt{n}$
 - (c) T(n) = 2T(n/4) + n
 - (d) $T(n) = 2T(n/4) + n^2$
- 5. Consider the binary search algorithm (see problem 5 from hw1).
 - (a) Give the recurrence for binary search. Explain.
 - (b) Use the master method to show that the solution to the recurrence is $T(n) = \Theta(\lg n)$.