CS 4499/5599 HW 6

1 Probability

Below is a table listing the probabilities of three binary random variables. In the empty table cells, fill in the correct values for each marginal or conditional probability. Your answers should to 4 decimal places.

X_0	X_1	X_2	$P(\blacktriangleleft, \blacktriangleright)$
0	0	0	0.100
1	0	0	0.140
0	1	0	0.140
1	1	0	0.140
0	0	1	0.140
1	0	1	0.100
0	1	1	0.140
1	1	1	0.100

Expression	Value
$P(X_0 = 1, X_1 = 0, X_2 = 1)$	
$P\left(X_{0}=0,X_{1}=1 ight)$	
$P\left(X_{2}=0 ight)$	
$P\left(X_{1}=0 X_{0}=1\right)$	
$P(X_0 = 1, X_1 = 0 X_2 = 1)$	
$P\left(X_{0}=1 X_{1}=0,X_{2}=1 ight)$	

2 Joint Distributions

You are given the prior distribution P(X), and two conditional distributions P(Y|X) and P(Z|Y) as below (you are also given the fact that Z is independent from X given Y). All variables are binary variables. Compute the following joint distributions based on the chain rule. Your answers should be to 4 decimal places.

\overline{X}	P(X)
0	0.900
1	0.100

Y	X	P(Y X)
0	0	0.600
1	0	0.400
0	1	0.300
1	1	0.700

Z	Y	$P\left(Z Y ight)$
0	0	0.400
1	0	0.600
0	1	0.300
1	1	0.700

X	Y	$P\left(X,Y\right)$
0	0	
1	0	
0	1	
1	1	

X	Y	Z	$P\left(X,Y,Z ight)$
0	0	0	
1	0	0	0.012
0	1	0	0.108
1	1	0	
0	0	1	0.324
1	0	1	
0	1	1	0.252
1	1	1	

3 Independence Assumptions

For each of the following four subparts, you are given three joint probability distribution tables. For each distribution, please identify if the given independence / conditional independence assumption is true or false. For your convenience, we have also provided some marginal and conditional probability distribution tables that could assist you in solving this problem.

a) X is independent from Y

X	Y	P(X,Y)
0	0	0.040
1	0	0.060
0	1	0.360
1	1	0.540

X	P(X)
0	0.400
1	0.600

X	Y	$P\left(X Y ight)$
0	0	0.400
1	0	0.600
0	1	0.400
1	1	0.600

b) X is independent from Y

X	Y	P(X,Y)
0	0	0.220
1	0	0.180
0	1	0.300
1	1	0.300

\overline{Y}	P(Y)
0	0.400
1	0.600

X	$P\left(X ight)$
0	0.520
1	0.480

c) X is independent from Y given Z

X	Y	Z	P(X,Y,Z)
0	0	0	0.128
1	0	0	0.032
0	1	0	0.032
1	1	0	0.008
0	0	1	0.120
1	0	1	0.280
0	1	1	0.120
1	1	1	0.280

X	Z	P(X Z)
0	0	0.800
1	0	0.200
0	1	0.300
1	1	0.700

X	Y	Z	P(X Y,Z)
0	0	0	0.800
1	0	0	0.200
0	1	0	0.800
1	1	0	0.200
0	0	1	0.300
1	0	1	0.700
0	1	1	0.300
1	1	1	0.700

d) X is independent from Y given Z

a) / t io in a op on a on t is				
X	Y	Z	$P\left(X,Y,Z ight)$	
0	0	0	0.070	
1	0	0	0.070	
0	1	0	0.420	
1	1	0	0.140	
0	0	1	0.030	
1	0	1	0.150	
0	1	1	0.030	
1	1	1	0.090	

X	Z	P(X Z)
0	0	0.700
1	0	0.300
0	1	0.200
1	1	0.800

X	Y	Z	P(X Y,Z)
0	0	0	0.500
1	0	0	0.500
0	1	0	0.750
1	1	0	0.250
0	0	1	0.167
1	0	1	0.833
0	1	1	0.250
1	1	1	0.750

4 Chain Rule

a) Given no independence assumptions, which of the following are equivalent to P(A,B|C)? Indicate all that apply.

- $\square P(A|B,C)P(B|C)$

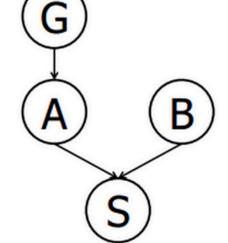
b) Given that A is independent of B given C, which of the following are equivalent to P(A,B|C)? Indicate all that apply.

- \square P(A|B,C)P(B|C)

	$\frac{P(C A)P(A B)P(B)}{P(C)}$	
	$\frac{P(B,C A)P(A)}{P(B,C)}$	
	$\frac{P(A C)P(C B)P(B)}{P(B,C)}$	
	$\frac{P(C A,B)P(B A)P(A)}{P(B C)P(C)}$	
Gi		which of the following are equivalent to P(A B,
Gi dic	iven that A is independent of B given C, veate all that apply.	which of the following are equivalent to P(A B,
Gi dic	iven that A is independent of B given C, vertex all that apply. $\frac{P(C A)P(A B)P(B)}{P(C)}$	which of the following are equivalent to P(A B,

5 Bayes' Nets

Suppose that a patient can have a symptom (S) that can be caused by two different diseases (A and B). It is known that the variation of gene G plays a big role in the manifestation of disease A. The Bayes' Net and corresponding probability tables for this situation are shown below.


 $P(A \mid G)$

1.00

0.00

0.10

0.90

B	P(B)
\boldsymbol{b}	0.40
$\neg b$	0.60

A	B	S	$P(S \mid A, B)$
\boldsymbol{a}	b	s	1.00
\boldsymbol{a}	b	$\neg s$	0.00
a	$\neg b$	s	0.90
a	$\neg b$	$\neg s$	0.10
$\neg a$	b	s	0.80
$\neg a$	b	$\neg s$	0.20
$\neg a$	$\neg b$	s	0.10
$\neg a$	$\neg b$	$\neg s$	0.90

a) What is P(g, a, b, s)?

 \overline{G}

g

g

 $\neg g$

 \boldsymbol{A}

a

 $\neg a$

 \boldsymbol{a}

 $\neg a$

- b) What is the probability that a patient has disease A?
- c) What is the probability that a patient has disease A given that they have disease B?
- d) What is the probability that a patient has disease A given that they have symptom S and disease B?
- e) What is the probability that a patient has the disease carrying gene variation G given that they have disease A?
- f) What is the probability that a patient has the disease carrying gene variation G given that they have disease B?